Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Biochem Biophys Res Commun ; 705: 149724, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38432111

RESUMO

BACKGROUND: Although there are several studies in the development of various human cancers, the role of exosomes is poorly understood in the progression of gallbladder cancer. This study aims to characterize the metabolic changes occurring in exosomes obtained from patients with gallbladder cancer compared with those from other gallbladder disease groups. METHODS: Biliary exosomes were isolated from healthy donors (n = 3) and from patients with gallbladder cancer (n = 3), gallbladder polyps (n = 4), or cholecystitis (n = 3) using a validated exosome isolation kit. Afterward, we performed miRNA profiling and untargeted metabolomic analysis of the exosomes. The results were validated by integrating the results of the miRNA and metabolomic analyses. RESULTS: The gallbladder cancer group exhibited a significant reduction in the levels of multiple unsaturated phosphatidylethanolamines and phosphatidylcholines compared to the normal group, which resulted in the loss of exosome membrane integrity. Additionally, the gallbladder cancer group demonstrated significant overexpression of miR-181c and palmitic acid, and decreased levels of conjugated deoxycholic acid, all of which are strongly associated with the activation of the PI3K/AKT pathway. CONCLUSIONS: Our findings demonstrate that the contents of exosomes are disease-specific, particularly in gallbladder cancer, and that altered metabolites convey critical information regarding their phenotype. We believe that our metabolomic and miRNA profiling results may provide important insights into the development of gallbladder cancer.


Assuntos
Exossomos , Neoplasias da Vesícula Biliar , MicroRNAs , Humanos , Neoplasias da Vesícula Biliar/genética , Fosfatidilinositol 3-Quinases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38134516

RESUMO

Agastache rugosa contains phenolic compounds and flavonoids, and has been extensively used as a traditional herbal medicine. The major components in Agastache rugosa extract (ARE) are rosmarinic acid, tilianin, and acacetin, for which several analytical techniques have been reported. However, these substances have yet to be simultaneously quantified in human plasma. In this study, we aimed to simultaneously determine the three active components of ARE in human plasma by developing a reliable quantitative analytical method using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Chromatographic separation of the plasma samples was achieved using an ACQUITY UPLC® BEH C18 column with a gradient mobile phase of water and acetonitrile containing 0.1 % formic acid. Mass spectrometric detection was performed using a triple quadrupole tandem mass spectrometer in negative electrospray ionization (ESI-) and multiple reaction monitoring (MRM) modes. The developed quantitative method was validated for the three active components. All three analytes exhibited a linear response over the ranges of 0.5-50 ng/mL for rosmarinic acid, 0.1-20 ng/mL for acacetin, and 0.5-20 ng/mL for tilianin with a weighting factor of 1/x (where x is the concentration). At three quality control (QC) concentration levels (low, medium, and high), including the lower limit of quantitation (LLOQ), acceptable accuracy (±15 %) was achieved in the intra- and interday validations. The concentration of rosmarinic acid was highest in plasma. Tilianin and acacetin appeared and were eliminated earlier in the plasma than rosmarinic acid. This study provides a successfully validated method that can be used in further clinical applications of Agastache rugosa extracts.


Assuntos
Agastache , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Extratos Vegetais/química , 60556 , República da Coreia
3.
J Exp Clin Cancer Res ; 42(1): 338, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38093368

RESUMO

BACKGROUND: Oncogenic KRAS mutation, the most frequent mutation in non-small cell lung cancer (NSCLC), is an aggressiveness risk factor and leads to the metabolic reprogramming of cancer cells by promoting glucose, glutamine, and fatty acid absorption and glycolysis. Lately, sotorasib was approved by the FDA as a first-in-class KRAS-G12C inhibitor. However, sotorasib still has a derivative barrier, which is not effective for other KRAS mutation types, except for G12C. Additionally, resistance to sotorasib is likely to develop, demanding the need for alternative therapeutic strategies. METHODS: KRAS mutant, and wildtype NSCLC cells were used in vitro cell analyses. Cell viability, proliferation, and death were measured by MTT, cell counting, colony analyses, and annexin V staining for FACS. Cell tracker dyes were used to investigate cell morphology, which was examined by holotomograpy, and confocal microscopes. RNA sequencing was performed to identify key target molecule or pathway, which was confirmed by qRT-PCR, western blotting, and metabolite analyses by UHPLC-MS/MS. Zebrafish and mouse xenograft model were used for in vivo analysis. RESULTS: In this study, we found that nutlin-3a, an MDM2 antagonist, inhibited the KRAS-PI3K/Akt-mTOR pathway and disrupted the fusion of both autophagosomes and macropinosomes with lysosomes. This further elucidated non-apoptotic and catastrophic macropinocytosis associated methuosis-like cell death, which was found to be dependent on GFPT2 of the hexosamine biosynthetic pathway, specifically in KRAS mutant /p53 wild type NSCLC cells. CONCLUSION: These results indicate the potential of nutlin-3a as an alternative agent for treating KRAS mutant/p53 wild type NSCLC cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espectrometria de Massas em Tandem , Peixe-Zebra , Apoptose , Proteínas Proto-Oncogênicas c-mdm2/genética , Morte Celular , Mutação , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo
4.
Food Funct ; 14(19): 8933-8941, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37723877

RESUMO

Agastache rugosa, commonly known as Korean mint (KM), is a medicinal plant renowned for its potential health-promoting properties. However, the lack of bioavailability studies has hindered the acquisition of conclusive evidence. In this study, we investigated the bioavailability of six key polyphenols present in KM, including rosmarinic acid (RA), acacetin (AC), and four glycosides of AC. Utilizing UPLC-MS/MS, we analyzed their presence in human plasma and Caco-2 monolayers grown in permeable filter supports. Following single ingestion, we were able to detect RA, AC, and tilianin (TA) in the plasma. Consistent results were obtained for AC and TA but no transport was found for RA in a highly tight Caco-2 cell monolayer, indicating transport through the intercellular space for RA and transepithelial transport for AC and TA. Other AC glucosides with acetyl and/or malonyl groups were rarely found in the plasma. Interestingly, AC glucosides with only an acetyl group appeared at the basolateral side in Caco-2 monolayers, suggesting exclusive hydrolysis of malonyl glucosides in the colon. These findings highlight the high potential of RA, AC, and TA as bioactive compounds that may confer health benefits.


Assuntos
Agastache , Polifenóis , Humanos , Células CACO-2 , Cromatografia Líquida , Disponibilidade Biológica , Espectrometria de Massas em Tandem , Glucosídeos , República da Coreia
5.
Phytomedicine ; 115: 154818, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37187105

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a chronic, relapsing skin disease accompanied by itchy and dry skin. AD is caused by complex interactions between innate and adaptive immune response. AD treatment include glucocorticoids and immunosuppressants. However, long-term treatment can have serious side effects. Thus, an effective AD treatment with fewer side effects is required. Natural materials, including herbal medicines, have potential applications. PURPOSE: This study evaluated the in vivo and in vitro therapeutic effects of BS012, a mixture of Asarum sieboldii, Platycodon grandiflorum, and Cinnamomum cassia extracts, on AD and investigated the underlying metabolic mechanisms. METHODS: The anti-inflammatory effects of BS012 were assessed using a mouse model of AD induced by 1­chloro-2,4-dinitrobenzene (DNCB) and in tumor necrosis factor-alpha/interferon-gamma (TNF-α/IFN-γ) stimulated normal human epidermal keratinocytes (NHEKs). In DNCB-induced mice, total dermatitis score, histopathological analysis, and immune cell factors were assessed to evaluate the anti-atopic activity. In TNF-α/IFN-γ-stimulated NHEKs, pro-inflammatory cytokines, chemokines, and related signaling pathways were investigated. Serum and intracellular metabolomics were performed to identify the metabolic mechanism underlying the therapeutic effects of BS012 treatment. RESULTS: In DNCB-induced mice, BS012 showed potent anti-atopic activity, including reducing AD-like skin lesions and inhibiting the expression of Th2 cytokines and thymic stromal lymphopoietin. In TNF-α/IFN-γ-stimulated keratinocytes, BS012 dose-dependently inhibited the expression of pro-inflammatory cytokines and chemokines by blocking nuclear factor-kappa B and signal transducer and activator of transcription signaling pathways. Serum metabolic profiles of mice revealed significant changes in lipid metabolism related to inflammation in AD. Intracellular metabolome analysis revealed that BS012 treatment affected the metabolism associated with inflammation, skin barrier function, and lipid organization of the stratum corneum. CONCLUSION: BS012 exerts anti-atopic activity by reducing the Th2-specific inflammatory response and improving skin barrier function in AD in vivo and in vitro. These effects are mainly related to the inhibition of inflammation and recovery of metabolic imbalance in lipid organization. BS012, a novel combination with strong activity in suppressing the Th2-immune response, could be a potential alternative for AD treatment. Furthermore, the metabolic mechanism in vivo and in vitro using a metabolomics approach will provide crucial information for the development of natural products for AD treatment.


Assuntos
Asarum , Cinnamomum aromaticum , Dermatite Atópica , Platycodon , Humanos , Animais , Camundongos , Dermatite Atópica/patologia , Asarum/metabolismo , Cinnamomum aromaticum/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Dinitroclorobenzeno , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Quimiocinas/metabolismo , Interferon gama/metabolismo , Dinitrobenzenos , Lipídeos , Pele/metabolismo , Camundongos Endogâmicos BALB C
6.
Biomed Chromatogr ; 37(8): e5642, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37016500

RESUMO

The hexosamine biosynthesis pathway (HBP) is a glucose metabolism pathway that produces uridine diphosphate N-acetyl glucosamine (UDP-GlcNAc). Substantial changes in HBP, including elevated HBP flux and UDP-GlcNAc levels, are associated with cancer pathogenesis. Particularly, cancer cells expressing oncogenic Kirsten rat sarcoma virus (KRAS) are highly dependent on HBP for growth and survival. To differentiate between HBP metabolites in KRAS wild-type (WT) and mutant (MT) lung cancer cells, a simultaneous quantitative method for analyzing seven HPB metabolites was developed using ultra-high-performance liquid chromatography-tandem mass spectrometry. A simple method without complicated preparation steps, such as derivatization or isotope labeling, was optimized for the simultaneous analysis of highly hydrophilic HBP metabolites, and the developed method was successfully verified. The intra- and inter-day coefficients of variation were less than 15% for all HBP metabolites, and the recovery was 89.67-114.5%. All results of the validation list were in accordance with ICM M10 guidelines. Through this method, HBP metabolites in lung cancer cells were accurately quantified, and it was confirmed that all HBP metabolites were upregulated in KRAS MT cells compared with KRAS WT lung cancer cells. We expect that this will be a useful tool for metabolic research on cancer and for the development of new drugs for cancer treatment.


Assuntos
Hexosaminas , Neoplasias Pulmonares , Humanos , Hexosaminas/metabolismo , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Proteínas Proto-Oncogênicas p21(ras)/genética , Glucosamina , Difosfato de Uridina
7.
Ecotoxicol Environ Saf ; 247: 114213, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306612

RESUMO

A public health crisis in the form of a significant incidence of fatal pulmonary disease caused by repeated use of humidifier disinfectants containing polyhexamethylene guanidine phosphate (PHMG) recently arose in Korea. Although the mechanisms of pulmonary fibrosis following respiratory exposure to PHMG are well described, distant-organ effect has not been reported. In this study, we investigated whether intratracheal administration of PHMG affects liver pathophysiology and metabolism. Our PHMG mouse model showed a significant decrease in liver cholesterol level. An mRNA-seq analysis of liver samples revealed an alteration in the gene expression associated with cholesterol biosynthesis and metabolism to bile acids. The expression of genes involved in cholesterol synthesis was decreased in a real-time PCR analysis. To our surprise, we found that the coordinate regulation of cholesterol and bile acid homeostasis was completely disrupted. Despite the decreased cholesterol synthesis and low bile acid levels, the farnesoid X receptor/small heterodimer partner pathway, which controls negative feedback of bile acid synthesis, was activated in PHMG mice. As a consequence, gene expression of Cyp7a1 and Cyp7b1, the rate-limiting enzymes of the classical and alternative pathways of bile acid synthesis, was significantly downregulated. Notably, the changes in gene expression were corroborated by the hepatic concentrations of the bile acids. These results suggest that respiratory exposure to PHMG could cause cholestatic liver injury by disrupting the physiological regulation of hepatic cholesterol and bile acid homeostasis.


Assuntos
Ácidos e Sais Biliares , Colesterol , Camundongos , Animais , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Fígado/metabolismo , Homeostase
8.
J Pharm Biomed Anal ; 220: 114976, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-35939877

RESUMO

Agastache rugosa (fisch. & C.A. Mey.) Kuntze (A. rugosa) is used in traditional medicine in Korea since it has variety of medicinal activities, such as antioxidant, anti-inflammatory, anti-photoaging. Acacetin, tilianin, and rosmarinic acid are the active components of A. rugosa but their metabolites have not yet been fully identified. The purpose of this study was to identify the metabolites of A. rugosa after oral administration in Sprague-Dawley rats. For this study, active components (acacetin, tilianin, rosmarinic acid) and A. rugosa extract were dissolved in 0.5% carboxymethyl cellulose sodium solution respectively and treated by oral gavage at a dose of 50 mg/kg (for single compounds) and 200 mg/kg (for A. rugosa extract). For metabolite identification, plasma, urine, and fecal samples were collected after oral administration and analyzed using liquid chromatography coupled with Orbitrap mass spectrometry (UPLC-Orbitrap-MS) for data acquisition and metabolite identification. Metabolite identification was performed by considering the mass difference of the metabolites from the parent compounds and using their exact m/z and MS/MS fragments. The main biotransformation of the major components of A. rugosa was hydrolysis to acacetin, followed by demethylation, methylation, and conjugation. That of rosmarinic acid is methylated and conjugated. There were differences in metabolism between the treatment of single active components and extract; some sulfate-conjugated metabolites or metabolic intermediates were only detected in the treatment of single active components. The reason for this is thought to be the low content of the active components in the extract, which react competitively with the components present in the extract in the metabolic process. This study provides valuable evidence for a comprehensive understanding of the metabolism of A. rugosa.


Assuntos
Agastache , Agastache/química , Animais , Antioxidantes , Carboximetilcelulose Sódica , Cromatografia Líquida de Alta Pressão/métodos , Cinamatos , Depsídeos , Extratos Vegetais , Ratos , Ratos Sprague-Dawley , Sódio , Sulfatos , Espectrometria de Massas em Tandem/métodos
10.
Biochem Biophys Res Commun ; 607: 1-8, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35358871

RESUMO

Drug-induced liver injury (DILI) is a condition caused by drugs that leads to abnormal hepatic function. Hepatotoxicity caused by DILI has been shown to be due to cellular stress, mitochondrial dysfunction, cell necrosis and apoptosis and many types of hepatotoxicity, such as phospholipidosis, steatosis and hepatitis, commonly share intracellular molecular mechanisms. Metabolomics can be useful for mechanism-based toxicity evaluations and has been recently utilized as a scientific technique that can effectively predict the risk factors for chemical substances. To evaluate the key events in hepatotoxicity associated with lysosomal phospholipase A2 (LPLA2) inhibition by cationic amphiphilic drugs (CADs), LPLA2 inhibition assays and phospholipid accumulation assays were performed in HepG2 cells. Additionally, to suggest the integrative molecular mechanisms of hepatotoxicity by CADs, we profiled intracellular metabolites. Cell-based metabolomics was performed using an UPLC-Orbitrap-MS instrument equipped with heated electrospray ionization in positive and negative ion modes. As a result, CADs such as amiodarone, fluoxetine, chlorpromazine and tamoxifen significantly inhibited LPLA2 and accumulated phospholipids. In metabolomics, a total of 17 significant metabolites were identified, and the changed metabolite types were as follows: nucleotide sugars, conjugated bile acids, branched-chain amino acids, polyamine biosynthesis, and long-chain fatty acid and glycerophospholipid metabolism. From these data, it was suggested that the integrative mechanism of DILI could be verified and that a toxicological approach is possible using metabolomics.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Cátions , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Humanos , Lisossomos/metabolismo , Metabolômica , Fosfolipases A2/metabolismo , Fosfolipídeos/metabolismo
11.
Neurosci Lett ; 774: 136492, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35114334

RESUMO

Stroke causes serious long-term disability and numerous molecular changes, including inflammation, depression, and immunosuppression. Despite this, the underlying metabolic mechanisms of poststroke complications remain unclear, and assessing metabolic changes may be beneficial. In this study, we investigated the changes in brain damage and long-term metabolic changes caused by stroke in a transient middle cerebral artery occlusion (tMCAO) mouse model. Metabolic profiling was conducted using UPLC-Orbitrap-MS/MS to compare the metabolites that changed 1 day, 1 week, 1 month, and 6 months after stroke. tMCAO caused an infarction that peaked at 1 week, following which atrophy was observed up to 6 months along with metabolomic changes. From the metabolomics analysis, 72 important metabolites associated with poststroke were identified, and the changes in their levels were most at 1 day and less significant at 1 week followed by a significant change 6 months after stroke. Fatty acids, corticosterone, tyrosine, and tryptophan metabolites are involved in immunosuppression and inflammation. These results indicated that the change in metabolic level after stroke was persistent and could be associated with poststroke complications, such as brain atrophy. Therefore, it was concluded that long-term metabolic changes could involve the chronic after-effects of ischemic stroke.


Assuntos
Infarto da Artéria Cerebral Média , Acidente Vascular Cerebral , Animais , Atrofia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/complicações , Metabolômica , Camundongos , Acidente Vascular Cerebral/complicações , Espectrometria de Massas em Tandem
12.
ACS Appl Mater Interfaces ; 14(1): 20-31, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34914354

RESUMO

Tissue microarchitecture imposes physical constraints to the migration of individual cells. Especially in cancer metastasis, three-dimensional structural barriers within the extracellular matrix are known to affect the migratory behavior of cells, regulating the pathological state of the cells. Here, we employed a culture platform with micropillar arrays of 2 µm diameter and 16 µm pitch (2.16 micropillar) as a mechanical stimulant. Using this platform, we investigated how a long-term culture of A549 human lung carcinoma cells on the (2.16) micropillar-embossed dishes would influence the pathological state of the cell. A549 cells grown on the (2.16) micropillar array with 10 µm height exhibited a significantly elongated morphology and enhanced migration even after the detachment and reattachment, as evidenced in the conventional wound-healing assay, single-cell tracking analysis, and in vivo tumor colonization assays. Moreover, the pillar-induced morphological deformation in nuclei was accompanied by cell-cycle arrest in the S phase, leading to suppressed proliferation. While these marked traits of morphology-migration-proliferation support more aggressive characteristics of metastatic cancer cells, typical indices of epithelial-mesenchymal transition were not found, but instead, remarkable traces of amoeboidal transition were confirmed. Our study also emphasizes the importance of mechanical stimuli from the microenvironment during pathogenesis and how gained traits can be passed onto subsequent generations, ultimately affecting their pathophysiological behavior. Furthermore, this study highlights the potential use of pillar-based mechanical stimuli as an in vitro cell culture strategy to induce more aggressive tumorigenic cancer cell models.


Assuntos
Técnicas de Cultura de Células/métodos , Neoplasias Pulmonares/metabolismo , Células A549 , Animais , Técnicas de Cultura de Células/instrumentação , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Ácidos Graxos/metabolismo , Feminino , Humanos , Fenômenos Mecânicos , Metabolômica , Camundongos Endogâmicos BALB C , Camundongos Nus , Pontos de Checagem da Fase S do Ciclo Celular/fisiologia
13.
Cell Death Differ ; 29(3): 540-555, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34556809

RESUMO

Developing methods to improve the regenerative capacity of somatic stem cells (SSCs) is a major challenge in regenerative medicine. Here, we propose the forced expression of LIN28A as a method to modulate cellular metabolism, which in turn enhances self-renewal, differentiation capacities, and engraftment after transplantation of various human SSCs. Mechanistically, in undifferentiated/proliferating SSCs, LIN28A induced metabolic reprogramming from oxidative phosphorylation (OxPhos) to glycolysis by activating PDK1-mediated glycolysis-TCA/OxPhos uncoupling. Mitochondria were also reprogrammed into healthy/fused mitochondria with improved functional capacity. The reprogramming allows SSCs to undergo cell proliferation more extensively with low levels of oxidative and mitochondrial stress. When the PDK1-mediated uncoupling was untethered upon differentiation, LIN28A-SSCs differentiated more efficiently with an increase of OxPhos by utilizing the reprogrammed mitochondria. This study provides mechanistic and practical approaches of utilizing LIN28A and metabolic reprogramming in order to improve SSCs utility in regenerative medicine.


Assuntos
Células-Tronco Adultas , Mitocôndrias , Células-Tronco Adultas/metabolismo , Diferenciação Celular , Reprogramação Celular , Glicólise , Humanos , Mitocôndrias/metabolismo , Fosforilação Oxidativa
14.
Metabolites ; 11(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34940570

RESUMO

The metabolomics approach represents the last downstream phenotype and is widely used in clinical studies and drug discovery. In this paper, we outline recent advances in the metabolomics research of autoimmune diseases (ADs) such as rheumatoid arthritis (RA), multiple sclerosis (MuS), and systemic lupus erythematosus (SLE). The newly discovered biomarkers and the metabolic mechanism studies for these ADs are described here. In addition, studies elucidating the metabolic mechanisms underlying these ADs are presented. Metabolomics has the potential to contribute to pharmacotherapy personalization; thus, we summarize the biomarker studies performed to predict the personalization of medicine and drug response.

15.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948233

RESUMO

Fatty acid synthase (FASN) plays an important role in cancer development, providing excess lipid sources for cancer growth by participating in de novo lipogenesis. Although several inhibitors of FASN have been developed, there are many limitations to using FASN inhibitors alone as cancer therapeutics. We therefore attempted to effectively inhibit cancer cell growth by using a FASN inhibitor in combination with an inhibitor of a deubiquitinating enzyme USP14, which is known to maintain FASN protein levels in hepatocytes. However, when FASN and USP14 were inhibited together, there were no synergistic effects on cancer cell death compared to inhibition of FASN alone. Surprisingly, USP14 rather reduced the protein levels and activity of FASN in cancer cells, although it slightly inhibited the ubiquitination of FASN. Indeed, treatment of an USP14 inhibitor IU1 did not significantly affect FASN levels in cancer cells. Furthermore, from an analysis of metabolites involved in lipid metabolism, metabolite changes in IU1-treated cells were significantly different from those in cells treated with a FASN inhibitor, Fasnall. These results suggest that FASN may not be a direct substrate of USP14 in the cancer cells. Consequently, we demonstrate that USP14 regulates proliferation of the cancer cells in a fatty acid synthase-independent manner, and targeting USP14 in combination with FASN may not be a viable method for effective cancer treatment.


Assuntos
Proliferação de Células , Ácido Graxo Sintase Tipo I/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Ubiquitina Tiolesterase/metabolismo , Células A549 , Ácido Graxo Sintase Tipo I/genética , Células HEK293 , Humanos , Células MCF-7 , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Pirróis/farmacologia , Pirrolidinas/farmacologia , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/genética , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/genética
16.
Plants (Basel) ; 10(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34834649

RESUMO

Aster glehni F. Schmidt (AG), is a natural product known to have anti-obesity effects, but the mechanism underlying these effects is not well documented. We hypothesized that AG may have inhibitory effects on enzymes related to lipid accumulation. Herein, AG fractions were tested against HMG-CoA reductase (HMGR) and fatty acid synthase (FAS), two important enzymes involved in cholesterol and fatty acid synthesis, respectively. We found that dicaffeoylquinic acid (DCQA) methyl esters present in AG are largely responsible for the inhibition of HMGR and FAS. Since free DCQA is a major form present in AG, we demonstrated that a simple methylation of the AG extract could increase the overall inhibitory effects against those enzymes. Through this simple process, we were able to increase the inhibitory effect by 150%. We believe that our processed AG effectively modulates the HMGR and FAS activities, providing promising therapeutic potential for cholesterol- and lipid-lowering effects.

17.
Metabolites ; 11(10)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34677404

RESUMO

Zinc plays a pivotal role in the function of cells and can induce apoptosis in various cancer cells, including Raji B lymphoma. However, the metabolic mechanism of Zn-induced apoptosis in Raji cells has not been explored. In this study, we performed global metabolic profiling using UPLC-Orbitrap-MS to assess the apoptosis of Raji cells induced by Zn ions released from ZnO nanorods. Multivariate analysis and database searches identified altered metabolites. Furthermore, the differences in the phosphorylation of 1380 proteins were also evaluated by Full Moon kinase array to discover the protein associated Zn-induced apoptosis. From the results, a prominent increase in glycerophosphocholine and fatty acids was observed after Zn ion treatment, but only arachidonic acid was shown to induce apoptosis. The kinase array revealed that the phosphorylation of p53, GTPase activation protein, CaMK2a, PPAR-γ, and PLA-2 was changed. From the pathway analysis, metabolic changes showed earlier onset than protein signaling, which were related to choline metabolism. LC-MS analysis was used to quantify the intracellular choline concentration, which decreased after Zn treatment, which may be related to the choline consumption required to produce choline-containing metabolites. Overall, we found that choline metabolism plays an important role in Zn-induced Raji cell apoptosis.

19.
Metabolomics ; 17(8): 71, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34355282

RESUMO

INTRODUCTION: Bariatric surgery is known to be the most effective treatment for weight loss in obese patients and for the rapid remission of obesity-related comorbidities. These short-term improvements result from not only limited digestion or absorption but also dynamic changes in metabolism throughout the whole body. However, short-term metabolism studies associated with bariatric surgery in Asian individuals have not been reported. OBJECTIVES: The aim of this study was to investigate the short-term metabolome changes in the serum promoted by laparoscopic sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) and to determine the underlying mechanisms that affect obesity-related comorbidities. METHODS: Serum samples were collected from Korean patients who underwent RYGB or SG before and 4 weeks after the surgery. Metabolomic and lipidomic profiling was performed using UPLC-Orbitrap-MS, and data were analyzed using statistical analysis. RESULTS: Metabolites mainly related to amino acids, lipids (fatty acids, glycerophospholipids, sphingolipids, glycerolipids) and bile acids changed after surgery, and these changes were associated with the lowering of risk factors for obesity-related diseases such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D) and atherosclerosis. Interestingly, the number of significantly altered metabolites related to the lipid metabolism were greater in SG than in RYGB. Furthermore, the metabolites related to amino acid metabolism were significantly changed only after SG, whereas bile acid changed significantly only following RYGB. CONCLUSION: These differences could result from anatomical differences between the two surgeries and could be related to the gut microbiota. This study provides crucial information to expand the knowledge of the common but different molecular mechanisms involved in obesity and obesity-related comorbidities affected by each bariatric procedure.


Assuntos
Cirurgia Bariátrica , Metaboloma , Obesidade , Adulto , Aterosclerose/sangue , Aterosclerose/epidemiologia , Aterosclerose/metabolismo , Comorbidade , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Gastrectomia , Derivação Gástrica , Humanos , Laparoscopia , Lipidômica , Masculino , Metaboloma/fisiologia , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/sangue , Obesidade/epidemiologia , Obesidade/metabolismo , Obesidade/cirurgia , Período Perioperatório , Estudos Prospectivos , República da Coreia/epidemiologia , Fatores de Risco
20.
Biomed Chromatogr ; 35(11): e5190, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34101862

RESUMO

Mammalian or mechanistic target of rapamycin (mTOR) drives its fundamental cellular functions through two distinct catalytic subunits, mTORC1 and mTORC2, and is frequently dysregulated in most cancers. To treat cancers, developed mTOR inhibitors have been classified into first and second generations based on their ability to inhibit single (first-generation) and dual (second-generation) mTOR subunits. However, the underlying metabolic differences due to the effects of first- and second-generation mTOR inhibitors have not been clearly evaluated. In this study, rapamycin (sirolimus) and AZD8055 and PP242 were selected as first- and second-generation mTOR inhibitors, respectively, to evaluate the metabolic differences due to these two generations of mTOR inhibitors after a single oral dose using untargeted metabolomics and lipidomics approaches. The metabolic differences at each time point were compared using multivariate analysis. The multivariate and data analyses showed that metabolic disparity was more prominent within 8 h after drug administration and a broad class of metabolites were affected by the administration of both generations of mTOR inhibitors. Among the metabolite classes, changes in the pattern of fatty acids and glycerophospholipids were opposite, specifically at 4 and 8 h between the two generations of mTOR inhibitors. We speculate that the inhibition of the mTORC2 subunit by the second-generation mTOR inhibitor may have resulted in a distinct metabolic pattern between the first- and second-generation inhibitors. Finally, the findings of this study could assist in a more detailed understanding of the key metabolic differences caused by first- and second-generation mTOR inhibitors.


Assuntos
Lipidômica/métodos , Inibidores de MTOR/farmacologia , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Animais , Biomarcadores/sangue , Biomarcadores/urina , Cromatografia Líquida de Alta Pressão , Masculino , Espectrometria de Massas , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...